Compare commits

...

3 Commits

25 changed files with 1017 additions and 376 deletions

0
.gitattributes vendored Normal file
View File

View File

@ -1,6 +1,10 @@
cmake_minimum_required(VERSION 3.10) cmake_minimum_required(VERSION 3.10)
project(kgg-dec VERSION 0.5.1 LANGUAGES CXX) project(kgg-dec VERSION 0.6.0 LANGUAGES CXX)
add_subdirectory(third-party/aes)
add_subdirectory(third-party/md5)
add_subdirectory(third-party/sqlite3)
set(CMAKE_CXX_STANDARD 20) set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON) set(CMAKE_CXX_STANDARD_REQUIRED ON)
@ -23,6 +27,6 @@ target_include_directories(kgg-dec
src/tc_tea src/tc_tea
) )
target_link_libraries(kgg-dec PRIVATE shell32 ole32) target_link_libraries(kgg-dec PRIVATE shell32 ole32 libaes libmd5 sqlite3)
target_compile_definitions(kgg-dec PRIVATE NOMINMAX) target_compile_definitions(kgg-dec PRIVATE NOMINMAX)
target_compile_definitions(kgg-dec PRIVATE KGGDEC_PROJECT_VERSION="${PROJECT_VERSION}") target_compile_definitions(kgg-dec PRIVATE KGGDEC_PROJECT_VERSION="${PROJECT_VERSION}")

View File

@ -35,7 +35,7 @@
"description": "Configure for Visual Studio", "description": "Configure for Visual Studio",
"generator": "Visual Studio 17 2022", "generator": "Visual Studio 17 2022",
"binaryDir": "${sourceDir}/build/vs2022", "binaryDir": "${sourceDir}/build/vs2022",
"architecture": "Win32" "architecture": "x64"
} }
], ],
"buildPresets": [ "buildPresets": [

8
Jenkinsfile vendored
View File

@ -27,6 +27,14 @@ pipeline {
} }
} }
stage('Prepare') {
steps {
dir('third-party/sqlite3') {
sh './fetch_sqlite3.sh'
}
}
}
stage('Build') { stage('Build') {
steps { steps {
bat ''' bat '''

View File

@ -2,21 +2,20 @@
酷狗 `kgg` 文件解密工具。 酷狗 `kgg` 文件解密工具。
请尽量在下载文件的设备上操作,避免密钥丢失。
## 使用方法 (快捷) ## 使用方法 (快捷)
1. 将 `kgg-dec.exe` 与酷狗安装目录下的 `infra.dll` 拷贝到 `kgg` 文件所在目录。 1. 双击 `kgg-dec.exe` 开始解密当前目录。
2. 双击 `kgg-dec.exe` 开始解密当前目录。
## 使用方法 (命令行) ## 使用方法 (命令行)
1. 从酷狗安装目录拷贝 `infra.dll` 文件到 `kgg-dec.exe` 的目录。 1. 启动 `kgg-dec.exe`,其中第一个参数为含有 `kgg` 文件的目录。
2. 启动 `kgg-dec.exe`,其中第一个参数为含有 `kgg` 文件的目录。 2. 你也可以使用 `--` 来将参数后的 `-` 开头的参数视为输入文件或目录。
3. 你也可以使用 `--` 来将参数后的 `-` 开头的参数视为输入文件或目录。 3. 你可以指定多项输入文件或目录。
4. 你可以指定多项输入文件或目录。
### 其它参数 ### 其它参数
* `--infra-dll` (可选): 指定 `infra.dll` 的路径,默认为 `infra.dll`。
* `--scan-all-file-ext` (可选,`0` 或 `1`): 是否扫描所有文件后缀名。默认为 `0`,只扫描 `kgg` 文件。 * `--scan-all-file-ext` (可选,`0` 或 `1`): 是否扫描所有文件后缀名。默认为 `0`,只扫描 `kgg` 文件。
* `--db` (可选): 指定 `KGMusicV3.db` 的路径。默认为 `%AppData%/Kugou8/KGMusicV3.db`。 * `--db` (可选): 指定 `KGMusicV3.db` 的路径。默认为 `%AppData%/Kugou8/KGMusicV3.db`。
* `--suffix` (可选): 指定解密后文件的后缀。默认为 `_kgg-dec`。 * `--suffix` (可选): 指定解密后文件的后缀。默认为 `_kgg-dec`。
@ -41,8 +40,21 @@
在 Windows 下使用 CMake + Visual Studio 2022 构建。 在 Windows 下使用 CMake + Visual Studio 2022 构建。
第一次构建前请到 `third-party/sqlite3` 目录下执行 `fetch_sqlite3.sh`,或手动下载源码放置到对应的位置。
然后就可以利用 CMake 构建了:
```cmd ```cmd
cmake --preset vs -DCMAKE_BUILD_TYPE=Release cmake --preset vs -DCMAKE_BUILD_TYPE=Release
cmake --build --preset vs-release --config Release cmake --build --preset vs-release --config Release
copy /y README.MD .\\build\\vs2022\\ copy /y README.MD .\\build\\vs2022\\
``` ```
## 第三方软件
该程序用到了以下第三方软件:
- [SQLite3](https://www.sqlite.org/) (Public Domain)
- [Tiny AES in C](https://github.com/kokke/tiny-AES-c) (Public Domain)
- [MD5.c](https://github.com/freebsd/freebsd-src/blob/release/14.2.0/sys/kern/md5c.c) (from FreeBSD)
- Derived from the "RSA Data Security, Inc. MD5 Message-Digest Algorithm".

View File

@ -2,6 +2,7 @@
#include <bit> #include <bit>
#include <cstdint> #include <cstdint>
#include <type_traits>
#if defined(_MSC_VER) #if defined(_MSC_VER)
#define bswap_u16 _byteswap_ushort #define bswap_u16 _byteswap_ushort
@ -15,35 +16,87 @@
namespace Endian { namespace Endian {
inline uint64_t be_u64_read(const uint8_t* p) { template <typename T>
T be_read(const uint8_t* p)
requires(std::is_integral_v<T>)
{
// ReSharper disable once CppDFAUnreachableCode
if constexpr (std::endian::native == std::endian::big) { if constexpr (std::endian::native == std::endian::big) {
return *reinterpret_cast<const uint64_t*>(p); return *reinterpret_cast<const T*>(p);
} else if constexpr (sizeof(T) == 2) {
return bswap_u16(*reinterpret_cast<const T*>(p));
} else if constexpr (sizeof(T) == 4) {
return bswap_u32(*reinterpret_cast<const T*>(p));
} else if constexpr (sizeof(T) == 8) {
return bswap_u64(*reinterpret_cast<const T*>(p));
} else { } else {
return bswap_u64(*reinterpret_cast<const uint64_t*>(p)); T result{};
for (size_t i = 0; i < sizeof(T); i++) {
reinterpret_cast<uint8_t*>(&result)[i] = p[sizeof(T) - i - 1];
}
return result;
} }
} }
inline void be_u64_write(uint8_t* p, uint64_t value) { template <typename T>
void be_write(uint8_t* p, const T value)
requires(std::is_integral_v<T>)
{
// ReSharper disable once CppDFAUnreachableCode
if constexpr (std::endian::native == std::endian::big) { if constexpr (std::endian::native == std::endian::big) {
*reinterpret_cast<uint64_t*>(p) = value; *reinterpret_cast<T*>(p) = value;
} else if constexpr (sizeof(T) == 2) {
*reinterpret_cast<T*>(p) = bswap_u16(value);
} else if constexpr (sizeof(T) == 4) {
*reinterpret_cast<T*>(p) = bswap_u32(value);
} else if constexpr (sizeof(T) == 8) {
*reinterpret_cast<T*>(p) = bswap_u64(value);
} else { } else {
*reinterpret_cast<uint64_t*>(p) = bswap_u64(value); for (size_t i = 0; i < sizeof(T); i++) {
p[sizeof(T) - i - 1] = reinterpret_cast<const uint8_t*>(&value)[i];
}
} }
} }
inline uint32_t be_u32_read(const uint8_t* p) { template <typename T>
if constexpr (std::endian::native == std::endian::big) { T le_read(const uint8_t* p)
return *reinterpret_cast<const uint32_t*>(p); requires(std::is_integral_v<T>)
{
// ReSharper disable once CppDFAUnreachableCode
if constexpr (std::endian::native == std::endian::little) {
return *reinterpret_cast<const T*>(p);
} else if constexpr (sizeof(T) == 2) {
return bswap_u16(*reinterpret_cast<const T*>(p));
} else if constexpr (sizeof(T) == 4) {
return bswap_u32(*reinterpret_cast<const T*>(p));
} else if constexpr (sizeof(T) == 8) {
return bswap_u64(*reinterpret_cast<const T*>(p));
} else { } else {
return bswap_u32(*reinterpret_cast<const uint32_t*>(p)); T result{};
for (size_t i = 0; i < sizeof(T); i++) {
reinterpret_cast<uint8_t*>(&result)[i] = p[i];
}
return result;
} }
} }
inline void be_u32_write(uint8_t* p, uint32_t value) { template <typename T>
if constexpr (std::endian::native == std::endian::big) { void le_write(uint8_t* p, const T value)
*reinterpret_cast<uint32_t*>(p) = value; requires(std::is_integral_v<T>)
{
// ReSharper disable once CppDFAUnreachableCode
if constexpr (std::endian::native == std::endian::little) {
*reinterpret_cast<T*>(p) = value;
} else if constexpr (sizeof(T) == 2) {
*reinterpret_cast<T*>(p) = bswap_u16(value);
} else if constexpr (sizeof(T) == 4) {
*reinterpret_cast<T*>(p) = bswap_u32(value);
} else if constexpr (sizeof(T) == 8) {
*reinterpret_cast<T*>(p) = bswap_u64(value);
} else { } else {
*reinterpret_cast<uint32_t*>(p) = bswap_u32(value); for (size_t i = 0; i < sizeof(T); i++) {
p[i] = reinterpret_cast<const uint8_t*>(&value)[i];
}
} }
} }

View File

@ -1,137 +1,168 @@
#include "infra.h" #include "infra.h"
#include "sqlite_error.h"
#include "sqlite_fn.h"
#include <windows.h> #include <aes.h>
#include <endian_helper.h>
#include <md5.h>
#include <sqlite3.h>
#include <fstream>
namespace Infra { namespace Infra {
SqliteDB::SqliteDB(const std::filesystem::path& infra_dll_path) { constexpr size_t kPageSize = 0x400;
ok_ = InitInfraDll(infra_dll_path);
inline bool is_valid_page_1_header(const uint8_t* page1) {
const auto o10 = Endian::le_read<uint32_t>(&page1[0x10]);
const auto o14 = Endian::le_read<uint32_t>(&page1[0x14]);
const uint32_t v6 = (o10 & 0xff) << 8 | (o10 & 0xff00) << 16;
return o14 == 0x20204000 && (v6 - 0x200) <= 0xFE00 && ((v6 - 1) & v6) == 0;
} }
bool SqliteDB::Open(const std::filesystem::path& db_path, std::string_view key) { void derive_page_key(uint8_t* aes_key, uint8_t* aes_iv, const uint8_t* p_master_key, const uint32_t page_no) {
if (infra_ == nullptr) { uint8_t buffer[0x18];
return false;
// Setup buffer
memcpy(buffer, p_master_key, 0x10);
Endian::le_write(&buffer[0x10], page_no);
Endian::le_write(&buffer[0x14], 0x546C4173);
// Derive Key
md5(aes_key, buffer, 24);
// Derive IV
for (uint32_t ebx{page_no + 1}, i = 0; i < 16; i += 4) {
uint32_t eax = 0x7FFFFF07 * (ebx / 0xce26);
uint32_t ecx = 0x9EF4 * ebx - eax;
if (ecx & 0x8000'0000) {
ecx += 0x7FFF'FF07;
}
ebx = ecx;
Endian::le_write(&buffer[i], ebx);
}
md5(aes_iv, buffer, 16);
// Cleanup
memset(buffer, 0xCC, sizeof(buffer));
}
static const uint8_t kDefaultMasterKey[0x10] = {
0x1d, 0x61, 0x31, 0x45, 0xb2, 0x47, 0xbf, 0x7f, //
0x3d, 0x18, 0x96, 0x72, 0x14, 0x4f, 0xe4, 0xbf, //
};
static constexpr uint8_t kSQLiteDatabaseHeader[0x10] = {'S', 'Q', 'L', 'i', 't', 'e', ' ', 'f',
'o', 'r', 'm', 'a', 't', ' ', '3', 0};
int load_db(std::vector<uint8_t>& db_data, const std::filesystem::path& db_path) {
using namespace AES;
db_data.clear();
std::ifstream ifs_db(db_path, std::ios::binary);
if (!ifs_db.is_open()) {
return SQLITE_CANTOPEN;
} }
auto db_path_u8 = db_path.generic_u8string(); ifs_db.seekg(0, std::ios::end);
int rc = sqlite3_open_v2_(reinterpret_cast<const char*>(db_path_u8.c_str()), &db_, SQLITE_OPEN_READONLY, nullptr); const auto db_size = static_cast<size_t>(ifs_db.tellg());
const auto last_page = db_size / kPageSize;
if (db_size % kPageSize != 0) {
return SQLITE_CORRUPT;
}
ifs_db.seekg(0, std::ios::beg);
db_data.resize(db_size);
auto p_page = db_data.data();
AES_ctx ctx_aes{};
for (size_t page_no = 1; page_no <= last_page; page_no++, p_page += kPageSize) {
ifs_db.read(reinterpret_cast<char*>(p_page), kPageSize);
if (!ifs_db) [[unlikely]] {
return SQLITE_IOERR;
}
{
uint8_t aes_key[16];
uint8_t aes_iv[16];
derive_page_key(aes_key, aes_iv, kDefaultMasterKey, static_cast<uint32_t>(page_no));
AES_init_ctx_iv(&ctx_aes, aes_key, aes_iv);
}
if (page_no == 1) [[unlikely]] {
if (memcmp(p_page, kSQLiteDatabaseHeader, 0x10) == 0) {
ifs_db.read(reinterpret_cast<char*>(p_page + kPageSize),
static_cast<std::streamsize>(db_size - kPageSize));
return SQLITE_OK; // no encryption
}
if (!is_valid_page_1_header(p_page)) [[unlikely]] {
db_data.clear();
return SQLITE_CORRUPT; // header validation failed
}
uint8_t backup[0x08]; // backup magic numbers
memcpy(&backup, &p_page[0x10], 0x08);
memcpy(&p_page[0x10], &p_page[0x08], 0x08);
AES_CBC_decrypt_buffer(&ctx_aes, p_page + 0x10, kPageSize - 0x10);
if (memcmp(backup, &p_page[0x10], 0x08) != 0) {
db_data.clear();
return SQLITE_CORRUPT; // header validation failed
}
memcpy(p_page, kSQLiteDatabaseHeader, 0x10);
} else {
AES_CBC_decrypt_buffer(&ctx_aes, p_page, kPageSize);
}
}
return SQLITE_OK;
}
int dump_ekey(kgm_ekey_db_t& result, const std::filesystem::path& db_path) {
result.clear();
std::vector<uint8_t> db_data;
int rc = load_db(db_data, db_path);
if (rc != SQLITE_OK) { if (rc != SQLITE_OK) {
return false; return rc;
} }
if (!key.empty()) { // Open an in-memory database
rc = sqlite3_key_(db_, key.data(), static_cast<int>(key.size())); sqlite3* db = nullptr;
rc = sqlite3_open(":memory:", &db);
if (rc != SQLITE_OK) { if (rc != SQLITE_OK) {
sqlite3_close_v2_(db_); return rc;
db_ = nullptr;
return false;
}
} }
return true; const auto p_db_bytes = db_data.data();
} const auto len = static_cast<sqlite3_int64>(db_data.size());
rc = sqlite3_deserialize(db, "main", p_db_bytes, len, len, SQLITE_DESERIALIZE_READONLY);
void SqliteDB::Close() { if (rc != SQLITE_OK) {
if (db_) { sqlite3_close(db);
sqlite3_close_v2_(db_); return rc;
db_ = nullptr;
}
}
void SqliteDB::FreeInfraDll() {
if (infra_ != nullptr) {
FreeLibrary(reinterpret_cast<HMODULE>(infra_));
infra_ = nullptr;
} }
sqlite3_open_v2_ = nullptr;
sqlite3_key_ = nullptr;
sqlite3_prepare_v2_ = nullptr;
sqlite3_step_ = nullptr;
sqlite3_column_text_ = nullptr;
sqlite3_close_v2_ = nullptr;
sqlite3_finalize_ = nullptr;
}
bool SqliteDB::InitInfraDll(const std::filesystem::path& infra_dll_path) {
auto path_unicode = infra_dll_path.wstring();
HMODULE hMod = LoadLibraryW(path_unicode.c_str());
infra_ = hMod;
if (hMod == nullptr) {
return false;
}
sqlite3_open_v2_ = reinterpret_cast<sqlite3_open_v2_t>(GetProcAddress(hMod, "sqlite3_open_v2"));
sqlite3_key_ = reinterpret_cast<sqlite3_key_t>(GetProcAddress(hMod, "sqlite3_key"));
sqlite3_prepare_v2_ = reinterpret_cast<sqlite3_prepare_v2_t>(GetProcAddress(hMod, "sqlite3_prepare_v2"));
sqlite3_step_ = reinterpret_cast<sqlite3_step_t>(GetProcAddress(hMod, "sqlite3_step"));
sqlite3_column_text_ = reinterpret_cast<sqlite3_column_text_t>(GetProcAddress(hMod, "sqlite3_column_text"));
sqlite3_close_v2_ = reinterpret_cast<sqlite3_close_v2_t>(GetProcAddress(hMod, "sqlite3_close_v2"));
sqlite3_finalize_ = reinterpret_cast<sqlite3_finalize_t>(GetProcAddress(hMod, "sqlite3_finalize"));
if (!sqlite3_open_v2_ || !sqlite3_key_ || !sqlite3_prepare_v2_ || !sqlite3_step_ || !sqlite3_column_text_ ||
!sqlite3_close_v2_ || !sqlite3_finalize_) {
infra_ = nullptr;
return false;
}
return true;
}
KugouDb::KugouDb(const std::filesystem::path& infra_dll_path, const std::filesystem::path& db_path)
: SqliteDB(infra_dll_path) {
int rc{-1};
if (!IsInfraOk()) {
return;
}
Open(db_path);
}
kgm_ekey_db_t KugouDb::dump_ekey(int& error) {
if (!IsOpen()) {
error = SQLITE_ERROR;
return {};
}
int rc{-1};
sqlite3_stmt* stmt{nullptr}; sqlite3_stmt* stmt{nullptr};
rc = sqlite3_prepare_v2(db,
rc = sqlite3_prepare_v2_(db_,
"select EncryptionKeyId, EncryptionKey from ShareFileItems" "select EncryptionKeyId, EncryptionKey from ShareFileItems"
" where EncryptionKey != ''", " where EncryptionKey != ''",
-1, &stmt, nullptr); -1, &stmt, nullptr);
if (rc != SQLITE_OK) { if (rc != SQLITE_OK) {
error = rc; sqlite3_close(db);
return {}; return rc;
} }
kgm_ekey_db_t result{}; while ((rc = sqlite3_step(stmt)) == SQLITE_ROW) {
while ((rc = sqlite3_step_(stmt)) == SQLITE_ROW) { const auto* ekey_id = reinterpret_cast<const char*>(sqlite3_column_text(stmt, 0));
const auto* ekey_id = reinterpret_cast<const char*>(sqlite3_column_text_(stmt, 0)); const auto* ekey = reinterpret_cast<const char*>(sqlite3_column_text(stmt, 1));
const auto* ekey = reinterpret_cast<const char*>(sqlite3_column_text_(stmt, 1));
result[ekey_id] = ekey; result[ekey_id] = ekey;
} }
if (rc != SQLITE_DONE) { if (rc != SQLITE_DONE) {
error = rc; sqlite3_close(db);
return rc;
} }
sqlite3_finalize_(stmt); sqlite3_finalize(stmt);
error = 0;
return result;
}
KugouDb::~KugouDb() { return sqlite3_close(db);
if (db_ != nullptr) {
sqlite3_close_v2_(db_);
db_ = nullptr;
}
}
bool KugouDb::Open(const std::filesystem::path& db_path) {
return SqliteDB::Open(db_path, {"7777B48756BA491BB4CEE771A3E2727E"});
} }
} // namespace Infra } // namespace Infra

View File

@ -1,49 +1,13 @@
#pragma once #pragma once
#include <filesystem> #include <filesystem>
#include <optional>
#include <unordered_map> #include <unordered_map>
#include "sqlite_base.h"
#include "sqlite_fn.h"
namespace Infra { namespace Infra {
typedef std::unordered_map<std::string, std::string> kgm_ekey_db_t; typedef std::unordered_map<std::string, std::string> kgm_ekey_db_t;
extern bool g_init_sqlite_ok;
class SqliteDB { int dump_ekey(kgm_ekey_db_t& result, const std::filesystem::path& db_path);
public:
explicit SqliteDB(const std::filesystem::path& infra_dll_path);
bool Open(const std::filesystem::path& db_path, std::string_view key);
void Close();
[[nodiscard]] bool IsInfraOk() const { return ok_; }
[[nodiscard]] bool IsOpen() const { return db_ != nullptr; }
private:
bool InitInfraDll(const std::filesystem::path& infra_dll_path);
bool ok_{false};
protected:
void FreeInfraDll();
void* infra_{nullptr};
sqlite3_open_v2_t sqlite3_open_v2_{nullptr};
sqlite3_key_t sqlite3_key_{nullptr};
sqlite3_prepare_v2_t sqlite3_prepare_v2_{nullptr};
sqlite3_step_t sqlite3_step_{nullptr};
sqlite3_column_text_t sqlite3_column_text_{nullptr};
sqlite3_close_v2_t sqlite3_close_v2_{nullptr};
sqlite3_finalize_t sqlite3_finalize_{nullptr};
sqlite3* db_{nullptr};
};
class KugouDb : public SqliteDB {
public:
explicit KugouDb(const std::filesystem::path& infra_dll_path, const std::filesystem::path& db_path);
~KugouDb();
bool Open(const std::filesystem::path& db_path);
kgm_ekey_db_t dump_ekey(int& error);
};
} // namespace Infra } // namespace Infra

View File

@ -1,9 +0,0 @@
#pragma once
// SQLite
#define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
#define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
typedef struct sqlite3 sqlite3;
typedef struct sqlite3_stmt sqlite3_stmt;

View File

@ -1,99 +0,0 @@
#pragma once
#define SQLITE_OK (0)
/* beginning-of-error-codes */
#define SQLITE_ERROR 1 /* Generic error */
#define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
#define SQLITE_PERM 3 /* Access permission denied */
#define SQLITE_ABORT 4 /* Callback routine requested an abort */
#define SQLITE_BUSY 5 /* The database file is locked */
#define SQLITE_LOCKED 6 /* A table in the database is locked */
#define SQLITE_NOMEM 7 /* A malloc() failed */
#define SQLITE_READONLY 8 /* Attempt to write a readonly database */
#define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
#define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
#define SQLITE_CORRUPT 11 /* The database disk image is malformed */
#define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
#define SQLITE_FULL 13 /* Insertion failed because database is full */
#define SQLITE_CANTOPEN 14 /* Unable to open the database file */
#define SQLITE_PROTOCOL 15 /* Database lock protocol error */
#define SQLITE_EMPTY 16 /* Internal use only */
#define SQLITE_SCHEMA 17 /* The database schema changed */
#define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
#define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
#define SQLITE_MISMATCH 20 /* Data type mismatch */
#define SQLITE_MISUSE 21 /* Library used incorrectly */
#define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
#define SQLITE_AUTH 23 /* Authorization denied */
#define SQLITE_FORMAT 24 /* Not used */
#define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
#define SQLITE_NOTADB 26 /* File opened that is not a database file */
#define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */
#define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */
#define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
#define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
/* end-of-error-codes */
inline const char* sqlite_get_error(int rc) {
switch (rc) {
case SQLITE_ERROR:
return "SQLITE_ERROR: Generic error";
case SQLITE_INTERNAL:
return "SQLITE_INTERNAL: Internal logic error in SQLite";
case SQLITE_PERM:
return "SQLITE_PERM: Access permission denied";
case SQLITE_ABORT:
return "SQLITE_ABORT: Callback routine requested an abort";
case SQLITE_BUSY:
return "SQLITE_BUSY: The database file is locked";
case SQLITE_LOCKED:
return "SQLITE_LOCKED: A table in the database is locked";
case SQLITE_NOMEM:
return "SQLITE_NOMEM: A malloc() failed";
case SQLITE_READONLY:
return "SQLITE_READONLY: Attempt to write a readonly database";
case SQLITE_INTERRUPT:
return "SQLITE_INTERRUPT: Operation terminated by sqlite3_interrupt()";
case SQLITE_IOERR:
return "SQLITE_IOERR: Some kind of disk I/O error occurred";
case SQLITE_CORRUPT:
return "SQLITE_CORRUPT: The database disk image is malformed";
case SQLITE_NOTFOUND:
return "SQLITE_NOTFOUND: Unknown opcode in sqlite3_file_control()";
case SQLITE_FULL:
return "SQLITE_FULL: Insertion failed because database is full";
case SQLITE_CANTOPEN:
return "SQLITE_CANTOPEN: Unable to open the database file";
case SQLITE_PROTOCOL:
return "SQLITE_PROTOCOL: Database lock protocol error";
case SQLITE_EMPTY:
return "SQLITE_EMPTY: Internal use only";
case SQLITE_SCHEMA:
return "SQLITE_SCHEMA: The database schema changed";
case SQLITE_TOOBIG:
return "SQLITE_TOOBIG: String or BLOB exceeds size limit";
case SQLITE_CONSTRAINT:
return "SQLITE_CONSTRAINT: Abort due to constraint violation";
case SQLITE_MISMATCH:
return "SQLITE_MISMATCH: Data type mismatch";
case SQLITE_MISUSE:
return "SQLITE_MISUSE: Library used incorrectly";
case SQLITE_NOLFS:
return "SQLITE_NOLFS: Uses OS features not supported on host";
case SQLITE_AUTH:
return "SQLITE_AUTH: Authorization denied";
case SQLITE_FORMAT:
return "SQLITE_FORMAT: Not used";
case SQLITE_RANGE:
return "SQLITE_RANGE: 2nd parameter to sqlite3_bind out of range";
case SQLITE_NOTADB:
return "SQLITE_NOTADB: File opened that is not a database file";
case SQLITE_NOTICE:
return "SQLITE_NOTICE: Notifications from sqlite3_log()";
case SQLITE_WARNING:
return "SQLITE_WARNING: Warnings from sqlite3_log()";
default:
return "<unknown>";
}
}

View File

@ -1,71 +0,0 @@
#pragma once
#include "sqlite_base.h"
/**
* @brief Opens a SQLite database file with extended options.
*
* @param filename The name of the database file to be opened (UTF-8 encoded).
* @param ppDb A pointer to a pointer that will receive the SQLite database
* handle upon successful opening.
* @param flags Flags that control the behavior of the database connection.
* @param zVfs The name of the VFS (Virtual File System) module to use.
* If NULL, the default VFS is used.
* @return Returns SQLITE_OK on success or an error code on failure.
*/
typedef int (*sqlite3_open_v2_t)(const char* filename, sqlite3** ppDb, int flags, const char* zVfs);
/**
* @brief Compiles an SQL statement into a prepared statement.
*
* @param db Database handle.
* @param zSql SQL statement, UTF-8 encoded.
* @param n Maximum length of zSql in bytes.
* @param ppStmt OUT: Statement handle.
* @param pzTail OUT: Pointer to unused portion of zSql.
* @return Returns SQLITE_OK on success or an error code on failure.
*/
typedef int (*sqlite3_prepare_v2_t)(sqlite3* db, const char* zSql, int n, sqlite3_stmt** ppStmt, const char** pzTail);
/**
* @brief Evaluates a prepared statement.
*
* @param stmt Prepared statement.
* @return Returns SQLITE_ROW, SQLITE_DONE, or an error code.
*/
typedef int (*sqlite3_step_t)(sqlite3_stmt* stmt);
/**
* @brief Returns the text value of a column in the current row of a result set.
*
* @param stmt Prepared statement.
* @param iCol Column index.
* @return Text value of the column.
*/
typedef const unsigned char* (*sqlite3_column_text_t)(sqlite3_stmt* stmt, int iCol);
/**
* @brief Destroys a prepared statement object.
*
* @param stmt Prepared statement.
* @return Returns SQLITE_OK on success or an error code on failure.
*/
typedef int (*sqlite3_finalize_t)(sqlite3_stmt* stmt);
/**
* @brief Closes a database connection and invalidates all prepared statements.
*
* @param db Database handle.
* @return Returns SQLITE_OK on success or an error code on failure.
*/
typedef int (*sqlite3_close_v2_t)(sqlite3* db);
/**
* @brief Sets the encryption key for a database.
*
* @param db Database to be keyed.
* @param pKey The key.
* @param nKey The length of the key in bytes.
* @return Returns SQLITE_OK on success or an error code on failure.
*/
typedef int (*sqlite3_key_t)(sqlite3* db, const void* pKey, int nKey);

View File

@ -1,5 +1,5 @@
#include <sqlite3.h>
#include "infra/infra.h" #include "infra/infra.h"
#include "infra/sqlite_error.h"
#include "jobs.hpp" #include "jobs.hpp"
#include "utils/cli.h" #include "utils/cli.h"
@ -41,7 +41,6 @@ void print_license() {
void print_usage() { void print_usage() {
fputs( fputs(
"Usage: kgg-dec " "Usage: kgg-dec "
"[--infra-dll infra.dll] "
"[--scan-all-file-ext 0] " "[--scan-all-file-ext 0] "
"[--db /path/to/KGMusicV3.db] " "[--db /path/to/KGMusicV3.db] "
"[--suffix _kgg-dec] " "[--suffix _kgg-dec] "
@ -64,15 +63,10 @@ int main() {
bool scan_all_exts = cli_args.get_scan_all_file_ext(); bool scan_all_exts = cli_args.get_scan_all_file_ext();
auto infra_dll_path = cli_args.get_infra_dll();
auto kgm_db_path = cli_args.get_db_path(); auto kgm_db_path = cli_args.get_db_path();
auto file_suffix = cli_args.get_file_suffix(); auto file_suffix = cli_args.get_file_suffix();
{ {
bool cli_arg_error{false}; bool cli_arg_error{false};
if (!exists(infra_dll_path)) {
fputs("[ERR ] infra.dll not found\n", stderr);
cli_arg_error = true;
}
if (!exists(kgm_db_path)) { if (!exists(kgm_db_path)) {
fputs("[ERR ] KGMusicV3.db not found\n", stderr); fputs("[ERR ] KGMusicV3.db not found\n", stderr);
@ -83,18 +77,11 @@ int main() {
} }
} }
int error{-1}; kgm_ekey_db_t ekey_db;
Infra::KugouDb db{infra_dll_path, kgm_db_path}; if (const auto rc = Infra::dump_ekey(ekey_db, kgm_db_path); rc != 0) {
if (!db.IsOpen()) { fprintf(stderr, "[ERR ] dump ekey failed %d (%s)", rc, sqlite3_errstr(rc));
fprintf(stderr, "[ERR ] db init error: is infra.dll ok?\n");
return 1; return 1;
} }
auto ekey_db = db.dump_ekey(error);
if (error != 0) {
fprintf(stderr, "[ERR ] dump ekey failed %d (%s)", error, sqlite_get_error(error));
return 1;
}
db.Close();
#ifndef NDEBUG #ifndef NDEBUG
fprintf(stderr, "ekey_db:\n"); fprintf(stderr, "ekey_db:\n");

View File

@ -15,12 +15,12 @@ inline void decrypt_round(uint8_t* p_plain,
uint64_t* iv1, uint64_t* iv1,
uint64_t* iv2, uint64_t* iv2,
const uint32_t* key) { const uint32_t* key) {
uint64_t iv1_next = Endian::be_u64_read(p_cipher); uint64_t iv1_next = Endian::be_read<uint64_t>(p_cipher);
uint64_t iv2_next = tc_tea_ecb_decrypt(iv1_next ^ *iv2, key); uint64_t iv2_next = tc_tea_ecb_decrypt(iv1_next ^ *iv2, key);
uint64_t plain = iv2_next ^ *iv1; uint64_t plain = iv2_next ^ *iv1;
*iv1 = iv1_next; *iv1 = iv1_next;
*iv2 = iv2_next; *iv2 = iv2_next;
Endian::be_u64_write(p_plain, plain); Endian::be_write(p_plain, plain);
} }
std::vector<uint8_t> tc_tea_cbc_decrypt(std::span<uint8_t> cipher, const uint32_t* key) { std::vector<uint8_t> tc_tea_cbc_decrypt(std::span<uint8_t> cipher, const uint32_t* key) {
@ -62,7 +62,7 @@ std::vector<uint8_t> tc_tea_cbc_decrypt(std::span<uint8_t> cipher, const uint32_
p_output[0] = header[kTeaBlockSize]; p_output[0] = header[kTeaBlockSize];
} }
// Validate zero padding // Validate zero padding
auto verify = Endian::be_u64_read(header + kTeaBlockSize) << 8; auto verify = Endian::be_read<uint64_t>(header + kTeaBlockSize) << 8;
if (verify != 0) { if (verify != 0) {
result.resize(0); result.resize(0);
} }

View File

@ -10,8 +10,8 @@ std::vector<uint8_t> tc_tea_cbc_decrypt(std::span<uint8_t> cipher, const uint32_
inline std::vector<uint8_t> tc_tea_cbc_decrypt(std::span<uint8_t> cipher, const uint8_t* key) { inline std::vector<uint8_t> tc_tea_cbc_decrypt(std::span<uint8_t> cipher, const uint8_t* key) {
uint32_t key_u32[4]; uint32_t key_u32[4];
for (int i = 0; i < 4; i++) { for (int i = 0; i < 4; i++, key += 4) {
key_u32[i] = Endian::be_u32_read(key + i * 4); key_u32[i] = Endian::be_read<uint32_t>(key);
} }
return tc_tea_cbc_decrypt(cipher, key_u32); return tc_tea_cbc_decrypt(cipher, key_u32);
} }

View File

@ -47,11 +47,6 @@ void CliParser::parse_from_cli() {
named_args_ = named_args; named_args_ = named_args;
} }
std::filesystem::path CliParser::get_infra_dll() const {
std::filesystem::path infra_dll_path{get_with_default(L"infra-dll", L"infra.dll")};
return absolute(infra_dll_path);
}
std::filesystem::path CliParser::get_db_path() const { std::filesystem::path CliParser::get_db_path() const {
std::filesystem::path kugou_db{}; std::filesystem::path kugou_db{};
if (const auto& it = named_args_.find(L"db"); it != named_args_.end()) { if (const auto& it = named_args_.find(L"db"); it != named_args_.end()) {

14
third-party/aes/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,14 @@
cmake_minimum_required(VERSION 3.10)
project(libaes VERSION 0.0.1 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Tiny AES in C (https://github.com/kokke/tiny-AES-c/) is licensed under the Unlicense license.
add_library(libaes STATIC aes.cpp)
target_include_directories(libaes
PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)

357
third-party/aes/aes.cpp vendored Normal file
View File

@ -0,0 +1,357 @@
#include "aes.h"
#include <cstring>
#define Nb 4
#define Nk 4 // The number of 32 bit words in a key.
#define Nr 10 // The number of rounds in AES Cipher.
namespace AES {
/*****************************************************************************/
/* Private variables: */
/*****************************************************************************/
// state - array holding the intermediate results during decryption.
typedef uint8_t state_t[4][4];
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
// The numbers below can be computed dynamically trading ROM for RAM -
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
static const uint8_t sbox[256] = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9,
0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f,
0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07,
0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3,
0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58,
0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3,
0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f,
0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac,
0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,
0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42,
0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39,
0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2,
0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76,
0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc,
0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d,
0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c,
0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f,
0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62,
0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd,
0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6,
0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
// The round constant word array, Rcon[i], contains the values given by
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
/*
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
* that you can remove most of the elements in the Rcon array, because they are unused.
*
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
*
* "Only the first some of these constants are actually used up to rcon[10] for AES-128 (as 11 round keys are needed),
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
*/
inline uint8_t getSBoxValue(const uint8_t num) {
return sbox[num];
}
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) {
unsigned i, k;
uint8_t temp_arr[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i) {
RoundKey[i * 4 + 0] = Key[i * 4 + 0];
RoundKey[i * 4 + 1] = Key[i * 4 + 1];
RoundKey[i * 4 + 2] = Key[i * 4 + 2];
RoundKey[i * 4 + 3] = Key[i * 4 + 3];
}
// All other "round keys" are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i) {
{
k = (i - 1) * 4;
temp_arr[0] = RoundKey[k + 0];
temp_arr[1] = RoundKey[k + 1];
temp_arr[2] = RoundKey[k + 2];
temp_arr[3] = RoundKey[k + 3];
}
if (i % Nk == 0) {
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = temp_arr[0];
temp_arr[0] = temp_arr[1];
temp_arr[1] = temp_arr[2];
temp_arr[2] = temp_arr[3];
temp_arr[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function SubWord()
{
temp_arr[0] = getSBoxValue(temp_arr[0]);
temp_arr[1] = getSBoxValue(temp_arr[1]);
temp_arr[2] = getSBoxValue(temp_arr[2]);
temp_arr[3] = getSBoxValue(temp_arr[3]);
}
temp_arr[0] = temp_arr[0] ^ Rcon[i / Nk];
}
// AES256 code was here.
const unsigned j = i * 4;
k = (i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ temp_arr[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ temp_arr[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ temp_arr[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ temp_arr[3];
}
}
void AES_init_ctx_iv(AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) {
KeyExpansion(ctx->RoundKey, key);
memcpy(ctx->Iv, iv, kBlockLen);
}
// This function adds the round key to state.
// The round key is added to the state by an XOR function.
void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) {
for (uint8_t i = 0; i < 4; ++i) {
for (uint8_t j = 0; j < 4; ++j) {
(*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
}
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void SubBytes(state_t* state) {
for (uint8_t i = 0; i < 4; ++i) {
for (uint8_t j = 0; j < 4; ++j) {
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
// The ShiftRows() function shifts the rows in the state to the left.
// Each row is shifted with different offset.
// Offset = Row number. So the first row is not shifted.
void ShiftRows(state_t* state) {
// Rotate first row 1 column to left
uint8_t temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
inline uint8_t xtime(uint8_t x) {
return x << 1 ^ (x >> 7 & 1) * 0x1b;
}
// MixColumns function mixes the columns of the state matrix
void MixColumns(state_t* state) {
for (uint8_t i = 0; i < 4; ++i) {
uint8_t t = (*state)[i][0];
uint8_t Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
uint8_t Tm = (*state)[i][0] ^ (*state)[i][1];
Tm = xtime(Tm);
(*state)[i][0] ^= Tm ^ Tmp;
Tm = (*state)[i][1] ^ (*state)[i][2];
Tm = xtime(Tm);
(*state)[i][1] ^= Tm ^ Tmp;
Tm = (*state)[i][2] ^ (*state)[i][3];
Tm = xtime(Tm);
(*state)[i][2] ^= Tm ^ Tmp;
Tm = (*state)[i][3] ^ t;
Tm = xtime(Tm);
(*state)[i][3] ^= Tm ^ Tmp;
}
}
// Multiply is used to multiply numbers in the field GF(2^8)
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
// The compiler seems to be able to vectorize the operation better this way.
// See https://github.com/kokke/tiny-AES-c/pull/34
#if MULTIPLY_AS_A_FUNCTION
static uint8_t Multiply(uint8_t x, uint8_t y) {
return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^
((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^
((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
}
#else
#define Multiply(x, y) \
(((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ \
((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))))
#endif
inline uint8_t getSBoxInvert(uint8_t num) {
return rsbox[num];
}
// MixColumns function mixes the columns of the state matrix.
// The method used to multiply may be difficult to understand for the inexperienced.
// Please use the references to gain more information.
void InvMixColumns(state_t* state) {
for (int i = 0; i < 4; ++i) {
uint8_t a = (*state)[i][0];
uint8_t b = (*state)[i][1];
uint8_t c = (*state)[i][2];
uint8_t d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
// The SubBytes Function Substitutes the values in the
// state matrix with values in an S-box.
void InvSubBytes(state_t* state) {
for (uint8_t i = 0; i < 4; ++i) {
for (uint8_t j = 0; j < 4; ++j) {
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
void InvShiftRows(state_t* state) {
// Rotate first row 1 column to right
uint8_t temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
// Cipher is the main function that encrypts the PlainText.
void Cipher(state_t* state, const uint8_t* RoundKey) {
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1;; ++round) {
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// Add round key to last round
AddRoundKey(Nr, state, RoundKey);
}
void InvCipher(state_t* state, const uint8_t* RoundKey) {
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = Nr - 1;; --round) {
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
if (round == 0) {
break;
}
InvMixColumns(state);
}
}
inline void XorWithIv(uint8_t* buf, const uint8_t* Iv) {
for (uint8_t i = 0; i < kBlockLen; ++i) // The block in AES is always 128bit no matter the key size
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {
uint8_t* Iv = ctx->Iv;
for (size_t i = 0; i < length; i += kBlockLen) {
XorWithIv(buf, Iv);
Cipher(reinterpret_cast<state_t*>(buf), ctx->RoundKey);
Iv = buf;
buf += kBlockLen;
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, kBlockLen);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length) {
for (size_t i = 0; i < length; i += kBlockLen) {
uint8_t storeNextIv[kBlockLen];
memcpy(storeNextIv, buf, kBlockLen);
InvCipher(reinterpret_cast<state_t*>(buf), ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, kBlockLen);
buf += kBlockLen;
}
}
} // namespace AES

25
third-party/aes/aes.h vendored Normal file
View File

@ -0,0 +1,25 @@
#pragma once
#include <cstdint>
namespace AES {
constexpr size_t kKeyLen = 16; // Key length in bytes
constexpr size_t kKeyExpansionSize = 176;
constexpr size_t kBlockLen = 16; // Block length in bytes - AES is 128b block only
struct AES_ctx {
uint8_t RoundKey[kKeyExpansionSize];
uint8_t Iv[16];
};
void AES_init_ctx_iv(AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
// buffer size MUST be mutile of AES_BLOCKLEN;
// Suggest https://en.wikipedia.org/wiki/Padding_(cryptography)#PKCS7 for padding scheme
// NOTES: you need to set IV in ctx via AES_init_ctx_iv() or AES_ctx_set_iv()
// no IV should ever be reused with the same key
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
} // namespace AES

15
third-party/md5/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,15 @@
cmake_minimum_required(VERSION 3.10)
project(md5 VERSION 0.0.1 LANGUAGES CXX)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Derived from the "RSA Data Security, Inc. MD5 Message-Digest Algorithm":
# https://github.com/freebsd/freebsd-src/blob/release/14.2.0/sys/kern/md5c.c
add_library(libmd5 STATIC md5.cpp)
target_include_directories(libmd5
PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)

284
third-party/md5/md5.cpp vendored Normal file
View File

@ -0,0 +1,284 @@
// Derived from the "RSA Data Security, Inc. MD5 Message-Digest Algorithm":
// src: https://github.com/freebsd/freebsd-src/blob/release/14.2.0/sys/kern/md5c.c
#include <bit>
#include <cstdint>
#include <cstring>
#include "md5.h"
#if defined(_MSC_VER)
#define bswap_u16 _byteswap_ushort
#define bswap_u32 _byteswap_ulong
#define bswap_u64 _byteswap_uint64
#else
#define bswap_u16 __builtin_bswap16
#define bswap_u32 __builtin_bswap32
#define bswap_u64 __builtin_bswap64
#endif
template <typename T>
void Encode(uint8_t* output, const T input)
requires(std::is_integral_v<T> && (sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8))
{
if constexpr (std::endian::native == std::endian::little || sizeof(T) == 1) {
memcpy(output, &input, sizeof(T));
// ReSharper disable once CppDFAUnreachableCode
} else if constexpr (sizeof(T) == 2) {
*reinterpret_cast<uint16_t*>(output) = bswap_u16(input);
} else if constexpr (sizeof(T) == 4) {
*reinterpret_cast<uint32_t*>(output) = bswap_u32(input);
} else if constexpr (sizeof(T) == 8) {
*reinterpret_cast<uint64_t*>(output) = bswap_u64(input);
}
}
template <typename T>
void Decode(T* output, const uint8_t* input)
requires(std::is_integral_v<T> && (sizeof(T) == 1 || sizeof(T) == 2 || sizeof(T) == 4 || sizeof(T) == 8))
{
if constexpr (std::endian::native == std::endian::little) {
memcpy(output, input, sizeof(T));
// ReSharper disable once CppDFAUnreachableCode
} else if constexpr (sizeof(T) == 2) {
*output = bswap_u16(*reinterpret_cast<const uint16_t*>(input));
} else if constexpr (sizeof(T) == 4) {
*output = bswap_u32(*reinterpret_cast<const uint32_t*>(input));
} else if constexpr (sizeof(T) == 8) {
*output = bswap_u64(*reinterpret_cast<const uint64_t*>(input));
}
}
inline void Encode(unsigned char* output, const uint32_t* input, const unsigned int len) {
if constexpr (std::endian::native == std::endian::little) {
memcpy(output, input, len);
} else {
// ReSharper disable once CppDFAUnreachableCode
for (unsigned int i = 0; i < len; i += 4, output += 4) {
Encode(output, input[i]);
}
}
}
inline void Decode(uint32_t* output, const unsigned char* input, const unsigned int len) {
// ReSharper disable once CppDFAUnreachableCode
if constexpr (std::endian::native == std::endian::little) {
memcpy(output, input, len);
} else {
for (unsigned int i = 0; i < len; i += 4, ++output) {
Decode(output, &input[i]);
}
}
}
void MD5Transform(uint32_t state[4], const unsigned char block[64]);
static unsigned char PADDING[64] = {0x80};
/* F, G, H and I are basic MD5 functions. */
#define F(x, y, z) (((x) & (y)) | ((~x) & (z)))
#define G(x, y, z) (((x) & (z)) | ((y) & (~z)))
#define H(x, y, z) ((x) ^ (y) ^ (z))
#define I(x, y, z) ((y) ^ ((x) | (~z)))
/* ROTATE_LEFT rotates x left n bits. */
#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
/*
* FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4.
* Rotation is separate from addition to prevent recomputation.
*/
#define FF(a, b, c, d, x, s, ac) \
{ \
(a) += F((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define GG(a, b, c, d, x, s, ac) \
{ \
(a) += G((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define HH(a, b, c, d, x, s, ac) \
{ \
(a) += H((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
#define II(a, b, c, d, x, s, ac) \
{ \
(a) += I((b), (c), (d)) + (x) + (uint32_t)(ac); \
(a) = ROTATE_LEFT((a), (s)); \
(a) += (b); \
}
/*
* MD5 block update operation. Continues an MD5 message-digest
* operation, processing another message block, and updating the
* context.
*/
void md5_update(MD5_CTX* ctx, const uint8_t* in, const size_t len) {
unsigned int i{0};
const unsigned char* input = in;
/* Compute number of bytes mod 64 */
unsigned int index = ctx->count % 64;
ctx->count += len;
// ReSharper disable once CppTooWideScopeInitStatement
const unsigned int partLen = 64 - index;
/* Transform as many times as possible. */
if (len >= partLen) {
memcpy(&ctx->buffer[index], input, partLen);
MD5Transform(ctx->state, ctx->buffer);
for (i = partLen; i + 63 < len; i += 64) {
MD5Transform(ctx->state, &input[i]);
}
index = 0;
}
/* Buffer remaining input */
memcpy(&ctx->buffer[index], &input[i], len - i);
}
/*
* MD5 padding. Adds padding followed by original length.
*/
static void MD5Pad(MD5_CTX* context) {
unsigned char bits[8];
/* Save number of bits */
Encode(bits, context->count << 3);
/* Pad out to 56 mod 64. */
const unsigned int index = context->count % 64;
const unsigned int padLen = index < 56 ? 56 - index : 120 - index;
md5_update(context, PADDING, padLen);
/* Append length (before padding) */
md5_update(context, bits, 8);
}
/*
* MD5 finalization. Ends an MD5 message-digest operation, writing
* the message digest and zeroizing the context.
*/
void md5_final(MD5_CTX* ctx, uint8_t* digest) {
/* Do padding. */
MD5Pad(ctx);
/* Store state in digest */
Encode(digest, ctx->state, MD5_DIGEST_LENGTH);
/* Zeroize sensitive information. */
memset(ctx, 0, sizeof(*ctx));
}
/* MD5 basic transformation. Transforms state based on block. */
void MD5Transform(uint32_t state[4], const unsigned char block[64]) {
uint32_t a = state[0], b = state[1], c = state[2], d = state[3], x[16];
Decode(x, block, 64);
/* Round 1 */
constexpr int S11 = 7;
constexpr int S12 = 12;
constexpr int S13 = 17;
constexpr int S14 = 22;
FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */
FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */
FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */
FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */
FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */
FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */
FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */
FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */
FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */
FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */
FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */
FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */
FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */
FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */
FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */
FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */
/* Round 2 */
constexpr int S21 = 5;
constexpr int S22 = 9;
constexpr int S23 = 14;
constexpr int S24 = 20;
GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */
GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */
GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */
GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */
GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */
GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */
GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */
GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */
GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */
GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */
GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */
GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */
GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */
GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */
GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */
GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */
/* Round 3 */
constexpr int S31 = 4;
constexpr int S32 = 11;
constexpr int S33 = 16;
constexpr int S34 = 23;
HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */
HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */
HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */
HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */
HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */
HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */
HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */
HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */
HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */
HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */
HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */
HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */
HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */
HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */
HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */
HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */
/* Round 4 */
constexpr int S41 = 6;
constexpr int S42 = 10;
constexpr int S43 = 15;
constexpr int S44 = 21;
II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */
II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */
II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */
II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */
II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */
II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */
II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */
II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */
II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */
II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */
II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */
II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */
II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */
II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */
II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */
II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
/* Zeroize sensitive information. */
memset(x, 0, sizeof(x));
}

46
third-party/md5/md5.h vendored Normal file
View File

@ -0,0 +1,46 @@
#pragma once
// Derived from the "RSA Data Security, Inc. MD5 Message-Digest Algorithm":
// src: https://github.com/freebsd/freebsd-src/blob/release/14.2.0/sys/kern/md5c.c
#include <cstdint>
#define MD5_BLOCK_LENGTH 64
#define MD5_DIGEST_LENGTH 16
#define MD5_DIGEST_STRING_LENGTH (MD5_DIGEST_LENGTH * 2 + 1)
/* MD5 context. */
struct MD5_CTX {
uint64_t count; /* number of bits, modulo 2^64 (lsb first) */
uint32_t state[4]; /* state (ABCD) */
unsigned char buffer[64]; /* input buffer */
};
/* MD5 initialization. Begins an MD5 operation, writing a new context. */
inline void md5_init(MD5_CTX* context) {
context->count = 0;
/* Load magic initialization constants. */
context->state[0] = 0x67452301;
context->state[1] = 0xefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;
}
void md5_update(MD5_CTX* ctx, const uint8_t* in, size_t len);
void md5_final(MD5_CTX* ctx, uint8_t* digest);
inline void md5(uint8_t* digest, const uint8_t* in, const size_t len) {
MD5_CTX ctx;
md5_init(&ctx);
md5_update(&ctx, in, len);
md5_final(&ctx, digest);
}
inline void md5(uint8_t* digest, const uint8_t* in, const size_t len, const uint8_t* in2, size_t len2) {
MD5_CTX ctx;
md5_init(&ctx);
md5_update(&ctx, in, len);
md5_update(&ctx, in2, len2);
md5_final(&ctx, digest);
}

2
third-party/sqlite3/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
sqlite-*/
sqlite-*.zip

11
third-party/sqlite3/CMakeLists.txt vendored Normal file
View File

@ -0,0 +1,11 @@
cmake_minimum_required(VERSION 3.10)
project(sqlite VERSION 0.0.1 LANGUAGES C)
# SQLite3 is in the public domain, see https://www.sqlite.org/copyright.html
add_library(sqlite3 STATIC sqlite-amalgamation-3470200/sqlite3.c)
target_include_directories(sqlite3
PUBLIC
"$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/sqlite-amalgamation-3470200>"
"$<INSTALL_INTERFACE:${CMAKE_INSTALL_INCLUDEDIR}>"
)

11
third-party/sqlite3/fetch_sqlite3.sh vendored Normal file
View File

@ -0,0 +1,11 @@
#!/bin/sh -ex
NAME="sqlite-amalgamation-3470200"
if ! sha256sum -c sqlite3.sha256sum; then
rm -f sqlite3-*.zip
curl -fsLO "https://www.sqlite.org/2024/$NAME.zip"
sha256sum -c sqlite3.sha256sum || exit 1
fi
unzip -n "$NAME.zip"

1
third-party/sqlite3/sqlite3.sha256sum vendored Normal file
View File

@ -0,0 +1 @@
aa73d8748095808471deaa8e6f34aa700e37f2f787f4425744f53fdd15a89c40 sqlite-amalgamation-3470200.zip