#include "aes.h" #include #define Nb 4 #define Nk 4 // The number of 32 bit words in a key. #define Nr 10 // The number of rounds in AES Cipher. namespace AES { /*****************************************************************************/ /* Private variables: */ /*****************************************************************************/ // state - array holding the intermediate results during decryption. typedef uint8_t state_t[4][4]; // The lookup-tables are marked const so they can be placed in read-only storage instead of RAM // The numbers below can be computed dynamically trading ROM for RAM - // This can be useful in (embedded) bootloader applications, where ROM is often limited. static const uint8_t sbox[256] = { // 0 1 2 3 4 5 6 7 8 9 A B C D E F 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16}; static const uint8_t rsbox[256] = { 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d}; // The round constant word array, Rcon[i], contains the values given by // x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8) static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36}; /* * Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12), * that you can remove most of the elements in the Rcon array, because they are unused. * * From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon * * "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed), * up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm." */ inline uint8_t getSBoxValue(const uint8_t num) { return sbox[num]; } // This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states. void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) { unsigned i, k; uint8_t temp_arr[4]; // Used for the column/row operations // The first round key is the key itself. for (i = 0; i < Nk; ++i) { RoundKey[i * 4 + 0] = Key[i * 4 + 0]; RoundKey[i * 4 + 1] = Key[i * 4 + 1]; RoundKey[i * 4 + 2] = Key[i * 4 + 2]; RoundKey[i * 4 + 3] = Key[i * 4 + 3]; } // All other "round keys" are found from the previous round keys. for (i = Nk; i < Nb * (Nr + 1); ++i) { { k = (i - 1) * 4; temp_arr[0] = RoundKey[k + 0]; temp_arr[1] = RoundKey[k + 1]; temp_arr[2] = RoundKey[k + 2]; temp_arr[3] = RoundKey[k + 3]; } if (i % Nk == 0) { // This function shifts the 4 bytes in a word to the left once. // [a0,a1,a2,a3] becomes [a1,a2,a3,a0] // Function RotWord() { const uint8_t u8tmp = temp_arr[0]; temp_arr[0] = temp_arr[1]; temp_arr[1] = temp_arr[2]; temp_arr[2] = temp_arr[3]; temp_arr[3] = u8tmp; } // SubWord() is a function that takes a four-byte input word and // applies the S-box to each of the four bytes to produce an output word. // Function SubWord() { temp_arr[0] = getSBoxValue(temp_arr[0]); temp_arr[1] = getSBoxValue(temp_arr[1]); temp_arr[2] = getSBoxValue(temp_arr[2]); temp_arr[3] = getSBoxValue(temp_arr[3]); } temp_arr[0] = temp_arr[0] ^ Rcon[i / Nk]; } // AES256 code was here. const unsigned j = i * 4; k = (i - Nk) * 4; RoundKey[j + 0] = RoundKey[k + 0] ^ temp_arr[0]; RoundKey[j + 1] = RoundKey[k + 1] ^ temp_arr[1]; RoundKey[j + 2] = RoundKey[k + 2] ^ temp_arr[2]; RoundKey[j + 3] = RoundKey[k + 3] ^ temp_arr[3]; } } bool AES_init_ctx_iv(AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) { KeyExpansion(ctx->RoundKey, key); memcpy(ctx->Iv, iv, kBlockLen); return true; } // This function adds the round key to state. // The round key is added to the state by an XOR function. void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) { for (uint8_t i = 0; i < 4; ++i) { for (uint8_t j = 0; j < 4; ++j) { (*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j]; } } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. void SubBytes(state_t* state) { for (uint8_t i = 0; i < 4; ++i) { for (uint8_t j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxValue((*state)[j][i]); } } } // The ShiftRows() function shifts the rows in the state to the left. // Each row is shifted with different offset. // Offset = Row number. So the first row is not shifted. void ShiftRows(state_t* state) { // Rotate first row 1 column to left uint8_t temp = (*state)[0][1]; (*state)[0][1] = (*state)[1][1]; (*state)[1][1] = (*state)[2][1]; (*state)[2][1] = (*state)[3][1]; (*state)[3][1] = temp; // Rotate second row 2 columns to left temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; // Rotate third row 3 columns to left temp = (*state)[0][3]; (*state)[0][3] = (*state)[3][3]; (*state)[3][3] = (*state)[2][3]; (*state)[2][3] = (*state)[1][3]; (*state)[1][3] = temp; } inline uint8_t xtime(uint8_t x) { return x << 1 ^ (x >> 7 & 1) * 0x1b; } // MixColumns function mixes the columns of the state matrix void MixColumns(state_t* state) { for (uint8_t i = 0; i < 4; ++i) { uint8_t t = (*state)[i][0]; uint8_t Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3]; uint8_t Tm = (*state)[i][0] ^ (*state)[i][1]; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp; Tm = (*state)[i][1] ^ (*state)[i][2]; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp; Tm = (*state)[i][2] ^ (*state)[i][3]; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp; Tm = (*state)[i][3] ^ t; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp; } } // Multiply is used to multiply numbers in the field GF(2^8) // Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary // The compiler seems to be able to vectorize the operation better this way. // See https://github.com/kokke/tiny-AES-c/pull/34 #if MULTIPLY_AS_A_FUNCTION static uint8_t Multiply(uint8_t x, uint8_t y) { return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */ } #else #define Multiply(x, y) \ (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ \ ((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))) #endif inline uint8_t getSBoxInvert(uint8_t num) { return rsbox[num]; } // MixColumns function mixes the columns of the state matrix. // The method used to multiply may be difficult to understand for the inexperienced. // Please use the references to gain more information. void InvMixColumns(state_t* state) { for (int i = 0; i < 4; ++i) { uint8_t a = (*state)[i][0]; uint8_t b = (*state)[i][1]; uint8_t c = (*state)[i][2]; uint8_t d = (*state)[i][3]; (*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09); (*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d); (*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b); (*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e); } } // The SubBytes Function Substitutes the values in the // state matrix with values in an S-box. void InvSubBytes(state_t* state) { for (uint8_t i = 0; i < 4; ++i) { for (uint8_t j = 0; j < 4; ++j) { (*state)[j][i] = getSBoxInvert((*state)[j][i]); } } } void InvShiftRows(state_t* state) { // Rotate first row 1 column to right uint8_t temp = (*state)[3][1]; (*state)[3][1] = (*state)[2][1]; (*state)[2][1] = (*state)[1][1]; (*state)[1][1] = (*state)[0][1]; (*state)[0][1] = temp; // Rotate second row 2 columns to right temp = (*state)[0][2]; (*state)[0][2] = (*state)[2][2]; (*state)[2][2] = temp; temp = (*state)[1][2]; (*state)[1][2] = (*state)[3][2]; (*state)[3][2] = temp; // Rotate third row 3 columns to right temp = (*state)[0][3]; (*state)[0][3] = (*state)[1][3]; (*state)[1][3] = (*state)[2][3]; (*state)[2][3] = (*state)[3][3]; (*state)[3][3] = temp; } // Cipher is the main function that encrypts the PlainText. void Cipher(state_t* state, const uint8_t* RoundKey) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(0, state, RoundKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr rounds are executed in the loop below. // Last one without MixColumns() for (round = 1;; ++round) { SubBytes(state); ShiftRows(state); if (round == Nr) { break; } MixColumns(state); AddRoundKey(round, state, RoundKey); } // Add round key to last round AddRoundKey(Nr, state, RoundKey); } void InvCipher(state_t* state, const uint8_t* RoundKey) { uint8_t round = 0; // Add the First round key to the state before starting the rounds. AddRoundKey(Nr, state, RoundKey); // There will be Nr rounds. // The first Nr-1 rounds are identical. // These Nr rounds are executed in the loop below. // Last one without InvMixColumn() for (round = Nr - 1;; --round) { InvShiftRows(state); InvSubBytes(state); AddRoundKey(round, state, RoundKey); if (round == 0) { break; } InvMixColumns(state); } } inline void XorWithIv(uint8_t* buf, const uint8_t* Iv) { for (uint8_t i = 0; i < kBlockLen; ++i) // The block in AES is always 128bit no matter the key size { buf[i] ^= Iv[i]; } } size_t AES_CBC_encrypt_buffer(AES_ctx* ctx, uint8_t* buf, size_t length) { uint8_t* Iv = ctx->Iv; for (size_t i = 0; i < length; i += kBlockLen) { XorWithIv(buf, Iv); Cipher(reinterpret_cast(buf), ctx->RoundKey); Iv = buf; buf += kBlockLen; } /* store Iv in ctx for next call */ memcpy(ctx->Iv, Iv, kBlockLen); return length; } size_t AES_CBC_decrypt_buffer(AES_ctx* ctx, uint8_t* buf, size_t length) { for (size_t i = 0; i < length; i += kBlockLen) { uint8_t storeNextIv[kBlockLen]; memcpy(storeNextIv, buf, kBlockLen); InvCipher(reinterpret_cast(buf), ctx->RoundKey); XorWithIv(buf, ctx->Iv); memcpy(ctx->Iv, storeNextIv, kBlockLen); buf += kBlockLen; } return length; } } // namespace AES