361 lines
14 KiB
C++
361 lines
14 KiB
C++
#include "aes.h"
|
||
|
||
#include <cstring>
|
||
|
||
#define Nb 4
|
||
#define Nk 4 // The number of 32 bit words in a key.
|
||
#define Nr 10 // The number of rounds in AES Cipher.
|
||
|
||
namespace AES {
|
||
|
||
/*****************************************************************************/
|
||
/* Private variables: */
|
||
/*****************************************************************************/
|
||
// state - array holding the intermediate results during decryption.
|
||
typedef uint8_t state_t[4][4];
|
||
|
||
// The lookup-tables are marked const so they can be placed in read-only storage instead of RAM
|
||
// The numbers below can be computed dynamically trading ROM for RAM -
|
||
// This can be useful in (embedded) bootloader applications, where ROM is often limited.
|
||
static const uint8_t sbox[256] = {
|
||
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
|
||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9,
|
||
0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f,
|
||
0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07,
|
||
0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3,
|
||
0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58,
|
||
0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3,
|
||
0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f,
|
||
0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88,
|
||
0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac,
|
||
0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a,
|
||
0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70,
|
||
0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11,
|
||
0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42,
|
||
0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
|
||
|
||
static const uint8_t rsbox[256] = {
|
||
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39,
|
||
0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2,
|
||
0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76,
|
||
0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc,
|
||
0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d,
|
||
0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c,
|
||
0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f,
|
||
0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85,
|
||
0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62,
|
||
0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd,
|
||
0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60,
|
||
0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d,
|
||
0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6,
|
||
0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
|
||
|
||
// The round constant word array, Rcon[i], contains the values given by
|
||
// x to the power (i-1) being powers of x (x is denoted as {02}) in the field GF(2^8)
|
||
static const uint8_t Rcon[11] = {0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36};
|
||
|
||
/*
|
||
* Jordan Goulder points out in PR #12 (https://github.com/kokke/tiny-AES-C/pull/12),
|
||
* that you can remove most of the elements in the Rcon array, because they are unused.
|
||
*
|
||
* From Wikipedia's article on the Rijndael key schedule @ https://en.wikipedia.org/wiki/Rijndael_key_schedule#Rcon
|
||
*
|
||
* "Only the first some of these constants are actually used – up to rcon[10] for AES-128 (as 11 round keys are needed),
|
||
* up to rcon[8] for AES-192, up to rcon[7] for AES-256. rcon[0] is not used in AES algorithm."
|
||
*/
|
||
|
||
inline uint8_t getSBoxValue(const uint8_t num) {
|
||
return sbox[num];
|
||
}
|
||
|
||
// This function produces Nb(Nr+1) round keys. The round keys are used in each round to decrypt the states.
|
||
void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key) {
|
||
unsigned i, k;
|
||
uint8_t temp_arr[4]; // Used for the column/row operations
|
||
|
||
// The first round key is the key itself.
|
||
for (i = 0; i < Nk; ++i) {
|
||
RoundKey[i * 4 + 0] = Key[i * 4 + 0];
|
||
RoundKey[i * 4 + 1] = Key[i * 4 + 1];
|
||
RoundKey[i * 4 + 2] = Key[i * 4 + 2];
|
||
RoundKey[i * 4 + 3] = Key[i * 4 + 3];
|
||
}
|
||
|
||
// All other "round keys" are found from the previous round keys.
|
||
for (i = Nk; i < Nb * (Nr + 1); ++i) {
|
||
{
|
||
k = (i - 1) * 4;
|
||
temp_arr[0] = RoundKey[k + 0];
|
||
temp_arr[1] = RoundKey[k + 1];
|
||
temp_arr[2] = RoundKey[k + 2];
|
||
temp_arr[3] = RoundKey[k + 3];
|
||
}
|
||
|
||
if (i % Nk == 0) {
|
||
// This function shifts the 4 bytes in a word to the left once.
|
||
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
|
||
|
||
// Function RotWord()
|
||
{
|
||
const uint8_t u8tmp = temp_arr[0];
|
||
temp_arr[0] = temp_arr[1];
|
||
temp_arr[1] = temp_arr[2];
|
||
temp_arr[2] = temp_arr[3];
|
||
temp_arr[3] = u8tmp;
|
||
}
|
||
|
||
// SubWord() is a function that takes a four-byte input word and
|
||
// applies the S-box to each of the four bytes to produce an output word.
|
||
|
||
// Function SubWord()
|
||
{
|
||
temp_arr[0] = getSBoxValue(temp_arr[0]);
|
||
temp_arr[1] = getSBoxValue(temp_arr[1]);
|
||
temp_arr[2] = getSBoxValue(temp_arr[2]);
|
||
temp_arr[3] = getSBoxValue(temp_arr[3]);
|
||
}
|
||
|
||
temp_arr[0] = temp_arr[0] ^ Rcon[i / Nk];
|
||
}
|
||
|
||
// AES256 code was here.
|
||
|
||
const unsigned j = i * 4;
|
||
k = (i - Nk) * 4;
|
||
RoundKey[j + 0] = RoundKey[k + 0] ^ temp_arr[0];
|
||
RoundKey[j + 1] = RoundKey[k + 1] ^ temp_arr[1];
|
||
RoundKey[j + 2] = RoundKey[k + 2] ^ temp_arr[2];
|
||
RoundKey[j + 3] = RoundKey[k + 3] ^ temp_arr[3];
|
||
}
|
||
}
|
||
|
||
bool AES_init_ctx_iv(AES_ctx* ctx, const uint8_t* key, const uint8_t* iv) {
|
||
KeyExpansion(ctx->RoundKey, key);
|
||
memcpy(ctx->Iv, iv, kBlockLen);
|
||
return true;
|
||
}
|
||
|
||
// This function adds the round key to state.
|
||
// The round key is added to the state by an XOR function.
|
||
void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey) {
|
||
for (uint8_t i = 0; i < 4; ++i) {
|
||
for (uint8_t j = 0; j < 4; ++j) {
|
||
(*state)[i][j] ^= RoundKey[round * Nb * 4 + i * Nb + j];
|
||
}
|
||
}
|
||
}
|
||
|
||
// The SubBytes Function Substitutes the values in the
|
||
// state matrix with values in an S-box.
|
||
void SubBytes(state_t* state) {
|
||
for (uint8_t i = 0; i < 4; ++i) {
|
||
for (uint8_t j = 0; j < 4; ++j) {
|
||
(*state)[j][i] = getSBoxValue((*state)[j][i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
// The ShiftRows() function shifts the rows in the state to the left.
|
||
// Each row is shifted with different offset.
|
||
// Offset = Row number. So the first row is not shifted.
|
||
void ShiftRows(state_t* state) {
|
||
// Rotate first row 1 column to left
|
||
uint8_t temp = (*state)[0][1];
|
||
(*state)[0][1] = (*state)[1][1];
|
||
(*state)[1][1] = (*state)[2][1];
|
||
(*state)[2][1] = (*state)[3][1];
|
||
(*state)[3][1] = temp;
|
||
|
||
// Rotate second row 2 columns to left
|
||
temp = (*state)[0][2];
|
||
(*state)[0][2] = (*state)[2][2];
|
||
(*state)[2][2] = temp;
|
||
|
||
temp = (*state)[1][2];
|
||
(*state)[1][2] = (*state)[3][2];
|
||
(*state)[3][2] = temp;
|
||
|
||
// Rotate third row 3 columns to left
|
||
temp = (*state)[0][3];
|
||
(*state)[0][3] = (*state)[3][3];
|
||
(*state)[3][3] = (*state)[2][3];
|
||
(*state)[2][3] = (*state)[1][3];
|
||
(*state)[1][3] = temp;
|
||
}
|
||
|
||
inline uint8_t xtime(uint8_t x) {
|
||
return x << 1 ^ (x >> 7 & 1) * 0x1b;
|
||
}
|
||
|
||
// MixColumns function mixes the columns of the state matrix
|
||
void MixColumns(state_t* state) {
|
||
for (uint8_t i = 0; i < 4; ++i) {
|
||
uint8_t t = (*state)[i][0];
|
||
uint8_t Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3];
|
||
uint8_t Tm = (*state)[i][0] ^ (*state)[i][1];
|
||
Tm = xtime(Tm);
|
||
(*state)[i][0] ^= Tm ^ Tmp;
|
||
Tm = (*state)[i][1] ^ (*state)[i][2];
|
||
Tm = xtime(Tm);
|
||
(*state)[i][1] ^= Tm ^ Tmp;
|
||
Tm = (*state)[i][2] ^ (*state)[i][3];
|
||
Tm = xtime(Tm);
|
||
(*state)[i][2] ^= Tm ^ Tmp;
|
||
Tm = (*state)[i][3] ^ t;
|
||
Tm = xtime(Tm);
|
||
(*state)[i][3] ^= Tm ^ Tmp;
|
||
}
|
||
}
|
||
|
||
// Multiply is used to multiply numbers in the field GF(2^8)
|
||
// Note: The last call to xtime() is unneeded, but often ends up generating a smaller binary
|
||
// The compiler seems to be able to vectorize the operation better this way.
|
||
// See https://github.com/kokke/tiny-AES-c/pull/34
|
||
#if MULTIPLY_AS_A_FUNCTION
|
||
static uint8_t Multiply(uint8_t x, uint8_t y) {
|
||
return (((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^
|
||
((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^
|
||
((y >> 4 & 1) * xtime(xtime(xtime(xtime(x)))))); /* this last call to xtime() can be omitted */
|
||
}
|
||
#else
|
||
#define Multiply(x, y) \
|
||
(((y & 1) * x) ^ ((y >> 1 & 1) * xtime(x)) ^ ((y >> 2 & 1) * xtime(xtime(x))) ^ \
|
||
((y >> 3 & 1) * xtime(xtime(xtime(x)))) ^ ((y >> 4 & 1) * xtime(xtime(xtime(xtime(x))))))
|
||
|
||
#endif
|
||
|
||
inline uint8_t getSBoxInvert(uint8_t num) {
|
||
return rsbox[num];
|
||
}
|
||
|
||
// MixColumns function mixes the columns of the state matrix.
|
||
// The method used to multiply may be difficult to understand for the inexperienced.
|
||
// Please use the references to gain more information.
|
||
void InvMixColumns(state_t* state) {
|
||
for (int i = 0; i < 4; ++i) {
|
||
uint8_t a = (*state)[i][0];
|
||
uint8_t b = (*state)[i][1];
|
||
uint8_t c = (*state)[i][2];
|
||
uint8_t d = (*state)[i][3];
|
||
|
||
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
|
||
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
|
||
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
|
||
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
|
||
}
|
||
}
|
||
|
||
// The SubBytes Function Substitutes the values in the
|
||
// state matrix with values in an S-box.
|
||
void InvSubBytes(state_t* state) {
|
||
for (uint8_t i = 0; i < 4; ++i) {
|
||
for (uint8_t j = 0; j < 4; ++j) {
|
||
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
void InvShiftRows(state_t* state) {
|
||
// Rotate first row 1 column to right
|
||
uint8_t temp = (*state)[3][1];
|
||
(*state)[3][1] = (*state)[2][1];
|
||
(*state)[2][1] = (*state)[1][1];
|
||
(*state)[1][1] = (*state)[0][1];
|
||
(*state)[0][1] = temp;
|
||
|
||
// Rotate second row 2 columns to right
|
||
temp = (*state)[0][2];
|
||
(*state)[0][2] = (*state)[2][2];
|
||
(*state)[2][2] = temp;
|
||
|
||
temp = (*state)[1][2];
|
||
(*state)[1][2] = (*state)[3][2];
|
||
(*state)[3][2] = temp;
|
||
|
||
// Rotate third row 3 columns to right
|
||
temp = (*state)[0][3];
|
||
(*state)[0][3] = (*state)[1][3];
|
||
(*state)[1][3] = (*state)[2][3];
|
||
(*state)[2][3] = (*state)[3][3];
|
||
(*state)[3][3] = temp;
|
||
}
|
||
|
||
// Cipher is the main function that encrypts the PlainText.
|
||
void Cipher(state_t* state, const uint8_t* RoundKey) {
|
||
uint8_t round = 0;
|
||
|
||
// Add the First round key to the state before starting the rounds.
|
||
AddRoundKey(0, state, RoundKey);
|
||
|
||
// There will be Nr rounds.
|
||
// The first Nr-1 rounds are identical.
|
||
// These Nr rounds are executed in the loop below.
|
||
// Last one without MixColumns()
|
||
for (round = 1;; ++round) {
|
||
SubBytes(state);
|
||
ShiftRows(state);
|
||
if (round == Nr) {
|
||
break;
|
||
}
|
||
MixColumns(state);
|
||
AddRoundKey(round, state, RoundKey);
|
||
}
|
||
// Add round key to last round
|
||
AddRoundKey(Nr, state, RoundKey);
|
||
}
|
||
|
||
void InvCipher(state_t* state, const uint8_t* RoundKey) {
|
||
uint8_t round = 0;
|
||
|
||
// Add the First round key to the state before starting the rounds.
|
||
AddRoundKey(Nr, state, RoundKey);
|
||
|
||
// There will be Nr rounds.
|
||
// The first Nr-1 rounds are identical.
|
||
// These Nr rounds are executed in the loop below.
|
||
// Last one without InvMixColumn()
|
||
for (round = Nr - 1;; --round) {
|
||
InvShiftRows(state);
|
||
InvSubBytes(state);
|
||
AddRoundKey(round, state, RoundKey);
|
||
if (round == 0) {
|
||
break;
|
||
}
|
||
InvMixColumns(state);
|
||
}
|
||
}
|
||
|
||
inline void XorWithIv(uint8_t* buf, const uint8_t* Iv) {
|
||
for (uint8_t i = 0; i < kBlockLen; ++i) // The block in AES is always 128bit no matter the key size
|
||
{
|
||
buf[i] ^= Iv[i];
|
||
}
|
||
}
|
||
|
||
size_t AES_CBC_encrypt_buffer(AES_ctx* ctx, uint8_t* buf, size_t length) {
|
||
uint8_t* Iv = ctx->Iv;
|
||
for (size_t i = 0; i < length; i += kBlockLen) {
|
||
XorWithIv(buf, Iv);
|
||
Cipher(reinterpret_cast<state_t*>(buf), ctx->RoundKey);
|
||
Iv = buf;
|
||
buf += kBlockLen;
|
||
}
|
||
/* store Iv in ctx for next call */
|
||
memcpy(ctx->Iv, Iv, kBlockLen);
|
||
return length;
|
||
}
|
||
|
||
size_t AES_CBC_decrypt_buffer(AES_ctx* ctx, uint8_t* buf, size_t length) {
|
||
for (size_t i = 0; i < length; i += kBlockLen) {
|
||
uint8_t storeNextIv[kBlockLen];
|
||
memcpy(storeNextIv, buf, kBlockLen);
|
||
InvCipher(reinterpret_cast<state_t*>(buf), ctx->RoundKey);
|
||
XorWithIv(buf, ctx->Iv);
|
||
memcpy(ctx->Iv, storeNextIv, kBlockLen);
|
||
buf += kBlockLen;
|
||
}
|
||
return length;
|
||
}
|
||
|
||
} // namespace AES
|