feat: added option to search closest ekey
This commit is contained in:
parent
3433d2e860
commit
77c201c551
@ -2,6 +2,7 @@ import {
|
||||
Box,
|
||||
Button,
|
||||
ButtonGroup,
|
||||
Checkbox,
|
||||
Flex,
|
||||
HStack,
|
||||
Heading,
|
||||
@ -14,23 +15,29 @@ import {
|
||||
MenuItem,
|
||||
MenuList,
|
||||
Text,
|
||||
Tooltip,
|
||||
} from '@chakra-ui/react';
|
||||
import { useDispatch, useSelector } from 'react-redux';
|
||||
import { qmc2AddKey, qmc2ClearKeys } from '../settingsSlice';
|
||||
import { qmc2AddKey, qmc2AllowFuzzyNameSearch, qmc2ClearKeys } from '../settingsSlice';
|
||||
import { selectStagingQMCv2Settings } from '../settingsSelector';
|
||||
import { useState } from 'react';
|
||||
import React, { useState } from 'react';
|
||||
import { MdAdd, MdDeleteForever, MdExpandMore, MdFileUpload } from 'react-icons/md';
|
||||
import { ImportFileModal } from './QMCv2/ImportFileModal';
|
||||
import { KeyInput } from './QMCv2/KeyInput';
|
||||
import { InfoOutlineIcon } from '@chakra-ui/icons';
|
||||
|
||||
export function PanelQMCv2Key() {
|
||||
const dispatch = useDispatch();
|
||||
const qmc2Keys = useSelector(selectStagingQMCv2Settings).keys;
|
||||
const { keys: qmc2Keys, allowFuzzyNameSearch } = useSelector(selectStagingQMCv2Settings);
|
||||
const [showImportModal, setShowImportModal] = useState(false);
|
||||
|
||||
const addKey = () => dispatch(qmc2AddKey());
|
||||
const clearAll = () => dispatch(qmc2ClearKeys());
|
||||
|
||||
const handleAllowFuzzyNameSearchCheckbox = (e: React.ChangeEvent<HTMLInputElement>) => {
|
||||
dispatch(qmc2AllowFuzzyNameSearch({ enable: e.target.checked }));
|
||||
};
|
||||
|
||||
return (
|
||||
<Flex minH={0} flexDir="column" flex={1}>
|
||||
<Heading as="h2" size="lg">
|
||||
@ -60,6 +67,34 @@ export function PanelQMCv2Key() {
|
||||
</MenuList>
|
||||
</Menu>
|
||||
</ButtonGroup>
|
||||
|
||||
<HStack>
|
||||
<Checkbox isChecked={allowFuzzyNameSearch} onChange={handleAllowFuzzyNameSearchCheckbox}>
|
||||
<Text>匹配相似文件名</Text>
|
||||
</Checkbox>
|
||||
<Tooltip
|
||||
hasArrow
|
||||
closeOnClick={false}
|
||||
label={
|
||||
<Box>
|
||||
<Text>若文件名匹配失败,则使用相似文件名的密钥。</Text>
|
||||
<Text>
|
||||
使用「
|
||||
<ruby>
|
||||
莱文斯坦距离
|
||||
<rp> (</rp>
|
||||
<rt>Levenshtein distance</rt>
|
||||
<rp>)</rp>
|
||||
</ruby>
|
||||
」算法计算相似程度。
|
||||
</Text>
|
||||
<Text>若密钥数量过多,匹配时可能会造成浏览器卡顿或无响应一段时间。</Text>
|
||||
</Box>
|
||||
}
|
||||
>
|
||||
<InfoOutlineIcon />
|
||||
</Tooltip>
|
||||
</HStack>
|
||||
</HStack>
|
||||
|
||||
<Box flex={1} minH={0} overflow="auto" pr="4">
|
||||
|
@ -54,6 +54,8 @@ export function InstructionsIOS() {
|
||||
<Heading as="h3" size="md" mt="3">
|
||||
解密离线文件
|
||||
</Heading>
|
||||
<Text>勾选设定界面的「使用近似文件名匹配」可跳过该节内容。</Text>
|
||||
<Text>⚠ 注意:若密钥过多,匹配过程可能会造成浏览器卡顿或无响应。</Text>
|
||||
<OrderedList>
|
||||
<ListItem>
|
||||
<Text>
|
||||
|
@ -10,11 +10,18 @@ const DEFAULT_STORAGE_KEY = 'um-react-settings';
|
||||
|
||||
function mergeSettings(settings: ProductionSettings): ProductionSettings {
|
||||
return produce(settingsSlice.getInitialState().production, (draft) => {
|
||||
for (const [k, v] of enumObject(settings.qmc2?.keys)) {
|
||||
if (settings?.qmc2) {
|
||||
const { allowFuzzyNameSearch, keys } = settings.qmc2;
|
||||
for (const [k, v] of enumObject(keys)) {
|
||||
if (typeof v === 'string') {
|
||||
draft.qmc2.keys[k] = v;
|
||||
}
|
||||
}
|
||||
|
||||
if (typeof allowFuzzyNameSearch === 'boolean') {
|
||||
draft.qmc2.allowFuzzyNameSearch = allowFuzzyNameSearch;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
import type { DecryptCommandOptions } from '~/decrypt-worker/types';
|
||||
import type { RootState } from '~/store';
|
||||
import { closestByLevenshtein } from '~/util/levenshtein';
|
||||
import { hasOwn } from '~/util/objects';
|
||||
|
||||
export const selectStagingQMCv2Settings = (state: RootState) => state.settings.staging.qmc2;
|
||||
@ -7,9 +8,21 @@ export const selectFinalQMCv2Settings = (state: RootState) => state.settings.pro
|
||||
|
||||
export const selectDecryptOptionByFile = (state: RootState, name: string): DecryptCommandOptions => {
|
||||
const normalizedName = name.normalize();
|
||||
const qmc2Keys = selectFinalQMCv2Settings(state).keys;
|
||||
|
||||
let qmc2Key: string | undefined;
|
||||
const { keys: qmc2Keys, allowFuzzyNameSearch } = selectFinalQMCv2Settings(state);
|
||||
if (hasOwn(qmc2Keys, normalizedName)) {
|
||||
qmc2Key = qmc2Keys[normalizedName];
|
||||
} else if (allowFuzzyNameSearch) {
|
||||
const qmc2KeyStoreNames = Object.keys(qmc2Keys);
|
||||
if (qmc2KeyStoreNames.length > 0) {
|
||||
const closestName = closestByLevenshtein(normalizedName, qmc2KeyStoreNames);
|
||||
console.debug('qmc2: key db could not find %o, using closest %o instead.', normalizedName, closestName);
|
||||
qmc2Key = qmc2Keys[closestName];
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
qmc2Key: hasOwn(qmc2Keys, normalizedName) ? qmc2Keys[normalizedName] : undefined,
|
||||
qmc2Key,
|
||||
};
|
||||
};
|
||||
|
@ -6,12 +6,14 @@ import { objectify } from 'radash';
|
||||
export interface StagingSettings {
|
||||
qmc2: {
|
||||
keys: { id: string; name: string; key: string }[];
|
||||
allowFuzzyNameSearch: boolean;
|
||||
};
|
||||
}
|
||||
|
||||
export interface ProductionSettings {
|
||||
qmc2: {
|
||||
keys: Record<string, string>; // { [fileName]: ekey }
|
||||
allowFuzzyNameSearch: boolean;
|
||||
};
|
||||
}
|
||||
|
||||
@ -22,11 +24,13 @@ export interface SettingsState {
|
||||
const initialState: SettingsState = {
|
||||
staging: {
|
||||
qmc2: {
|
||||
allowFuzzyNameSearch: false,
|
||||
keys: [],
|
||||
},
|
||||
},
|
||||
production: {
|
||||
qmc2: {
|
||||
allowFuzzyNameSearch: false,
|
||||
keys: {},
|
||||
},
|
||||
},
|
||||
@ -39,12 +43,14 @@ const stagingToProduction = (staging: StagingSettings): ProductionSettings => ({
|
||||
(item) => item.name.normalize(),
|
||||
(item) => item.key.trim()
|
||||
),
|
||||
allowFuzzyNameSearch: staging.qmc2.allowFuzzyNameSearch,
|
||||
},
|
||||
});
|
||||
|
||||
const productionToStaging = (production: ProductionSettings): StagingSettings => ({
|
||||
qmc2: {
|
||||
keys: Object.entries(production.qmc2.keys).map(([name, key]) => ({ id: nanoid(), name, key })),
|
||||
allowFuzzyNameSearch: production.qmc2.allowFuzzyNameSearch,
|
||||
},
|
||||
});
|
||||
|
||||
@ -81,6 +87,9 @@ export const settingsSlice = createSlice({
|
||||
qmc2ClearKeys(state) {
|
||||
state.staging.qmc2.keys = [];
|
||||
},
|
||||
qmc2AllowFuzzyNameSearch(state, { payload: { enable } }: PayloadAction<{ enable: boolean }>) {
|
||||
state.staging.qmc2.allowFuzzyNameSearch = enable;
|
||||
},
|
||||
discardStagingChanges: (state) => {
|
||||
state.staging = productionToStaging(state.production);
|
||||
},
|
||||
@ -107,6 +116,7 @@ export const {
|
||||
qmc2DeleteKey,
|
||||
qmc2ClearKeys,
|
||||
qmc2ImportKeys,
|
||||
qmc2AllowFuzzyNameSearch,
|
||||
|
||||
commitStagingChange,
|
||||
discardStagingChanges,
|
||||
|
17
src/util/__tests__/levenshtein.test.ts
Normal file
17
src/util/__tests__/levenshtein.test.ts
Normal file
@ -0,0 +1,17 @@
|
||||
import { closestByLevenshtein, levenshtein } from '../levenshtein';
|
||||
|
||||
test('levenshtein quick test', () => {
|
||||
expect(levenshtein('cat', '')).toStrictEqual(3);
|
||||
expect(levenshtein('', 'cat')).toStrictEqual(3);
|
||||
expect(levenshtein('cat', 'cat')).toStrictEqual(0);
|
||||
expect(levenshtein('cat', 'cut')).toStrictEqual(1);
|
||||
expect(levenshtein('kitten', 'sitting')).toStrictEqual(3);
|
||||
expect(levenshtein('tier', 'tor')).toStrictEqual(2);
|
||||
expect(levenshtein('mississippi', 'swiss miss')).toStrictEqual(8);
|
||||
});
|
||||
|
||||
test('closestByLevenshtein quick test', () => {
|
||||
expect(closestByLevenshtein('cat', ['cut', 'dog', 'bat'])).toStrictEqual('cut');
|
||||
expect(closestByLevenshtein('dag', ['dog', 'pumpkin'])).toStrictEqual('dog');
|
||||
expect(closestByLevenshtein('hello', ['jello', 'yellow', 'bello'])).toStrictEqual('jello');
|
||||
});
|
77
src/util/levenshtein.ts
Normal file
77
src/util/levenshtein.ts
Normal file
@ -0,0 +1,77 @@
|
||||
const textEncoder = new TextEncoder();
|
||||
|
||||
// translation of pseudocode from Wikipedia:
|
||||
// https://en.wikipedia.org/wiki/Levenshtein_distance#Iterative_with_two_matrix_rows
|
||||
export function levenshtein(str1: string, str2: string) {
|
||||
if (str1 === str2) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (str1.length === 0) {
|
||||
return str2.length;
|
||||
} else if (str2.length === 0) {
|
||||
return str1.length;
|
||||
}
|
||||
|
||||
// Convert them to Uint8Array to avoid expensive string APIs.
|
||||
const s = textEncoder.encode(str1.toLowerCase());
|
||||
const t = textEncoder.encode(str2.toLowerCase());
|
||||
const m = s.byteLength;
|
||||
const n = t.byteLength;
|
||||
|
||||
// create two work vectors of integer distances
|
||||
let v0 = new Uint32Array(n + 1);
|
||||
let v1 = new Uint32Array(n + 1);
|
||||
|
||||
// initialize v0 (the previous row of distances)
|
||||
// this row is A[0][i]: edit distance from an empty s to t;
|
||||
// that distance is the number of characters to append to s to make t.
|
||||
for (let i = 0; i <= n; i++) {
|
||||
v0[i] = i;
|
||||
}
|
||||
|
||||
for (let i = 0; i < m; i++) {
|
||||
// calculate v1 (current row distances) from the previous row v0
|
||||
|
||||
// first element of v1 is A[i + 1][0]
|
||||
// edit distance is delete (i + 1) chars from s to match empty t
|
||||
v1[0] = i + 1;
|
||||
|
||||
// use formula to fill in the rest of the row
|
||||
for (let j = 0; j < n; j++) {
|
||||
// calculating costs for A[i + 1][j + 1]
|
||||
const deletionCost = v0[j + 1] + 1;
|
||||
const insertionCost = v1[j] + 1;
|
||||
const substitutionCost = v0[j] + (s[i] === t[j] ? 0 : 1);
|
||||
v1[j + 1] = Math.min(deletionCost, insertionCost, substitutionCost);
|
||||
}
|
||||
|
||||
// copy v1 (current row) to v0 (previous row) for next iteration
|
||||
// since data in v1 is always invalidated, a swap without copy could be more efficient
|
||||
[v0, v1] = [v1, v0];
|
||||
}
|
||||
|
||||
// after the last swap, the results of v1 are now in v0
|
||||
return v0[n];
|
||||
}
|
||||
|
||||
export function closestByLevenshtein(str: string, candidates: string[]) {
|
||||
// Faster than pre-calculate all and pass scores to Math.min.
|
||||
const n = candidates.length;
|
||||
if (n === 0) {
|
||||
throw new Error('empty candidates');
|
||||
}
|
||||
|
||||
let lowestIdx = 0;
|
||||
let lowestScore = levenshtein(str, candidates[0]);
|
||||
|
||||
for (let i = 1; i < n; i++) {
|
||||
const score = levenshtein(str, candidates[i]);
|
||||
if (score < lowestScore) {
|
||||
lowestScore = score;
|
||||
lowestIdx = i;
|
||||
}
|
||||
}
|
||||
|
||||
return candidates[lowestIdx];
|
||||
}
|
Loading…
Reference in New Issue
Block a user