#include #include class QmcStaticCipher { private: uint8_t staticCipherBox[256] = { 0x77, 0x48, 0x32, 0x73, 0xDE, 0xF2, 0xC0, 0xC8, //0x00 0x95, 0xEC, 0x30, 0xB2, 0x51, 0xC3, 0xE1, 0xA0, //0x08 0x9E, 0xE6, 0x9D, 0xCF, 0xFA, 0x7F, 0x14, 0xD1, //0x10 0xCE, 0xB8, 0xDC, 0xC3, 0x4A, 0x67, 0x93, 0xD6, //0x18 0x28, 0xC2, 0x91, 0x70, 0xCA, 0x8D, 0xA2, 0xA4, //0x20 0xF0, 0x08, 0x61, 0x90, 0x7E, 0x6F, 0xA2, 0xE0, //0x28 0xEB, 0xAE, 0x3E, 0xB6, 0x67, 0xC7, 0x92, 0xF4, //0x30 0x91, 0xB5, 0xF6, 0x6C, 0x5E, 0x84, 0x40, 0xF7, //0x38 0xF3, 0x1B, 0x02, 0x7F, 0xD5, 0xAB, 0x41, 0x89, //0x40 0x28, 0xF4, 0x25, 0xCC, 0x52, 0x11, 0xAD, 0x43, //0x48 0x68, 0xA6, 0x41, 0x8B, 0x84, 0xB5, 0xFF, 0x2C, //0x50 0x92, 0x4A, 0x26, 0xD8, 0x47, 0x6A, 0x7C, 0x95, //0x58 0x61, 0xCC, 0xE6, 0xCB, 0xBB, 0x3F, 0x47, 0x58, //0x60 0x89, 0x75, 0xC3, 0x75, 0xA1, 0xD9, 0xAF, 0xCC, //0x68 0x08, 0x73, 0x17, 0xDC, 0xAA, 0x9A, 0xA2, 0x16, //0x70 0x41, 0xD8, 0xA2, 0x06, 0xC6, 0x8B, 0xFC, 0x66, //0x78 0x34, 0x9F, 0xCF, 0x18, 0x23, 0xA0, 0x0A, 0x74, //0x80 0xE7, 0x2B, 0x27, 0x70, 0x92, 0xE9, 0xAF, 0x37, //0x88 0xE6, 0x8C, 0xA7, 0xBC, 0x62, 0x65, 0x9C, 0xC2, //0x90 0x08, 0xC9, 0x88, 0xB3, 0xF3, 0x43, 0xAC, 0x74, //0x98 0x2C, 0x0F, 0xD4, 0xAF, 0xA1, 0xC3, 0x01, 0x64, //0xA0 0x95, 0x4E, 0x48, 0x9F, 0xF4, 0x35, 0x78, 0x95, //0xA8 0x7A, 0x39, 0xD6, 0x6A, 0xA0, 0x6D, 0x40, 0xE8, //0xB0 0x4F, 0xA8, 0xEF, 0x11, 0x1D, 0xF3, 0x1B, 0x3F, //0xB8 0x3F, 0x07, 0xDD, 0x6F, 0x5B, 0x19, 0x30, 0x19, //0xC0 0xFB, 0xEF, 0x0E, 0x37, 0xF0, 0x0E, 0xCD, 0x16, //0xC8 0x49, 0xFE, 0x53, 0x47, 0x13, 0x1A, 0xBD, 0xA4, //0xD0 0xF1, 0x40, 0x19, 0x60, 0x0E, 0xED, 0x68, 0x09, //0xD8 0x06, 0x5F, 0x4D, 0xCF, 0x3D, 0x1A, 0xFE, 0x20, //0xE0 0x77, 0xE4, 0xD9, 0xDA, 0xF9, 0xA4, 0x2B, 0x76, //0xE8 0x1C, 0x71, 0xDB, 0x00, 0xBC, 0xFD, 0x0C, 0x6C, //0xF0 0xA5, 0x47, 0xF7, 0xF6, 0x00, 0x79, 0x4A, 0x11 //0xF8 }; uint8_t getMask(size_t offset) { if (offset > 0x7fff) offset %= 0x7fff; return staticCipherBox[(offset * offset + 27) & 0xff]; } public: void proc(std::vector& buf, size_t offset) { for (size_t i = 0; i < buf.size(); i++) { buf[i] ^= getMask(offset + i); } } }; class QmcMapCipher { private: std::vector key; uint8_t rotate(uint8_t value, size_t bits) { auto rotate = (bits + 4) % 8; auto left = value << rotate; auto right = value >> rotate; return (left | right) & 0xff; } uint8_t getMask(size_t offset) { if (offset > 0x7fff) offset %= 0x7fff; const auto idx = (offset * offset + 71214) % key.size(); return rotate(key[idx], idx & 0x7); } public: QmcMapCipher(std::vector &argKey, short operation) { if (operation == 2) { if (argKey.size() == 0) { return; } } else if (operation == 1) { const char WordList[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"; srand(time(0)); uint32_t number = 0; while (number > 300 || number == 0) { number = rand(); } argKey.resize(number); for (int i = 0; i < argKey.size(); i++) { number = rand(); argKey[i] = WordList[number % 62]; } } else { return; } key = argKey; } void proc(std::vector& buf, size_t offset) { for (size_t i = 0; i < buf.size(); i++) { buf[i] ^= getMask(offset + i); } } }; class QmcRC4Cipher { public: void proc(std::vector& buf, size_t offset) { // Macro: common code after each process #define postProcess(len) \ { \ toProcess -= len; \ processed += len; \ offset += len; \ /* no more data */ \ if (toProcess == 0) { \ return; \ } \ } size_t toProcess = buf.size(); size_t processed = 0; std::vector tmpbuf; // 前 128 字节使用不同的解密方案 if (offset < FIRST_SEGMENT_SIZE) { size_t len_segment = std::min(FIRST_SEGMENT_SIZE - offset, buf.size()); tmpbuf.resize(len_segment); for (size_t i = 0; i < len_segment; i++) { tmpbuf[i] = buf[processed + i]; } procFirstSegment(tmpbuf, offset); for (size_t i = 0; i < len_segment; i++) { buf[processed + i] = tmpbuf[i]; } postProcess(len_segment); } // 区块对齐 if (offset % SEGMENT_SIZE != 0) { size_t len_segment = std::min(SEGMENT_SIZE - (offset % SEGMENT_SIZE), toProcess); tmpbuf.resize(len_segment); for (size_t i = 0; i < len_segment; i++) { tmpbuf[i] = buf[processed + i]; } procASegment(tmpbuf, offset); for (size_t i = 0; i < len_segment; i++) { buf[processed + i] = tmpbuf[i]; } postProcess(len_segment); } // 对每个区块逐一进行解密 while (toProcess > SEGMENT_SIZE) { tmpbuf.resize(SEGMENT_SIZE); for (size_t i = 0; i < SEGMENT_SIZE; i++) { tmpbuf[i] = buf[processed + i]; } procASegment(tmpbuf, offset); for (size_t i = 0; i < SEGMENT_SIZE; i++) { buf[processed + i] = tmpbuf[i]; } postProcess(SEGMENT_SIZE); } if (toProcess > 0) { tmpbuf.resize(toProcess); for (size_t i = 0; i < toProcess; i++) { tmpbuf[i] = buf[processed + i]; } procASegment(tmpbuf, offset); for (size_t i = 0; i < toProcess; i++) { buf[processed + i] = tmpbuf[i]; } } #undef postProcess } QmcRC4Cipher(std::vector& argKey, short operation) { if (operation == 2) { if (argKey.size() == 0) { return; } } else if (operation == 1) { const char WordList[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789"; srand(time(0)); uint32_t number = 0; while (number <= 300 || number >= 512) { number = rand(); } argKey.resize(number); for (int i = 0; i < argKey.size(); i++) { number = rand(); argKey[i] = WordList[number % 62]; } } else { return; } key = argKey; // init seed box S.resize(key.size()); for (size_t i = 0; i < key.size(); ++i) { S[i] = i & 0xff; } size_t j = 0; for (size_t i = 0; i < key.size(); ++i) { j = (S[i] + j + key[i % key.size()]) % key.size(); std::swap(S[i], S[j]); } // init hash base hash = 1; for (size_t i = 0; i < key.size(); i++) { uint8_t value = key[i]; // ignore if key char is '\x00' if (!value) continue; auto next_hash = hash * value; if (next_hash == 0 || next_hash <= hash) break; hash = next_hash; } } private: const size_t FIRST_SEGMENT_SIZE = 0x80; const size_t SEGMENT_SIZE = 5120; std::vector S; std::vector key; uint32_t hash = 1; void procFirstSegment(std::vector& buf, size_t offset) { for (size_t i = 0; i < buf.size(); i++) { buf[i] ^= key[getSegmentKey(offset + i)]; } } void procASegment(std::vector& buf, size_t offset) { // Initialise a new seed box std::vector nS; nS = S; // Calculate the number of bytes to skip. // The initial "key" derived from segment id, plus the current offset. int64_t skipLen = (offset % SEGMENT_SIZE) + getSegmentKey(int(offset / SEGMENT_SIZE)); // decrypt the block size_t j = 0; size_t k = 0; int i = -skipLen; for (; i < (int)buf.size(); i++) { j = (j + 1) % key.size(); k = (nS[j] + k) % key.size(); std::swap(nS[k], nS[j]); if (i >= 0) { buf[i] ^= nS[(nS[j] + nS[k]) % key.size()]; } } } uint64_t getSegmentKey(int id) { auto seed = key[id % key.size()]; uint64_t idx = ((double)hash / ((id + 1) * seed)) * 100.0; return idx % key.size(); } };